With World Watching, UK Allows Experiments to Genetically Alter Babies

Posted by Jessica Cussins March 4, 2015
Biopolitical Times
Face of little baby

A lengthy and consequential policy process in the UK has now come to an end. Despite what could turn out to be insurmountable legal and safety hurdles, on February 24 the United Kingdom legalized the use of nuclear genome transfer, also known as “3-person IVF” or “mitochondrial donation,” a suite of techniques that combine genetic material from two eggs or embryos causing inheritable alterations to the human germline.

After several hours of debate, the House of Lords gave overwhelming final approval to pass the regulations that had also been approved following 90 minutes of discussion in the House of Commons February 3. These regulations, which go into effect October 29, will enact a limited exception to the UK’s prohibition of the genetic modification of human gametes or embryos.

The understandable goal of these techniques is to prevent the maternal transmission of certain kinds of rare mitochondrial diseases. However, as CGS pointed out in a statement following the news, using experimental biotechnologies to bring a new person into the world is a very different prospect from using them to help someone alive today. Unlike a gene therapy that only impacts the single consenting individual, manipulations of gametes and embryos create permanent changes to the human germline that are passed on to future generations. This trans-generational experimentation is a dimension of the risk/benefit ratio that regulators have never dealt with explicitly before. And it’s a big part of why germline modification is prohibited in over 40 countries and by multiple human rights treaties.

It is not encouraging that this decision was made despite the fact that scientists from around the world warned that the techniques could well cause more problems than they solve, and that an early pioneer of their development, David L. Keefe, MD, abandoned them because he believes they are too dangerous for any resulting children. In a letter to the senior policy officer of the UK’s Human Fertilisation and Embryology Authority (HFEA), Keefe, chair of Obstetrics and Gynecology at NYU Langone Medical Center, explains that there is already a safer alternative available for women who want to have a healthy, genetically related child.

UK authorities have made assurances that more robust safety data is still coming and that no attempts will be made before that data is in. However, women were already being urged to give up their eggs to enable these techniques and “save as many lives as possible” weeks before the final vote even took place.

Amazingly, it seems that clinical trials of these techniques are actually illegal in the UK since the European Union Directive on clinical trials states "No gene therapy trials may be carried out which result in modifications to the subject's germ line genetic identity." This may be why discussion has centered on clinical use rather than clinical trials. But some UK lawyers, including international law expert Daniel Brennan, have argued that these regulations are nonetheless in violation, and legal challenges may be undertaken.

Has the desire to be at the forefront of biomedical innovation encouraged some of the people working on and promoting these techniques to overlook these challenging, if not insurmountable, legal and safety hurdles? It is unfortunate that this process came to feel like a petty political battle instead of a sober and honest assessment of a use of genetic technology long considered “contrary to human dignity” by the Universal Declaration on the Human Genome and Human Rights.

This move has now turned the UK into an international outlier, but it may not remain that way for long. Shoukhrat Mitalipov of Oregon Health and Science University is initiating a business arrangement in China with Boyalife (and infamous cloning fraudster Woo Suk Hwang) to commercialize these techniques for his company, Mitogenome Therapeutics. He intends to use germline modification techniques not only for the prevention of rare mitochondrial diseases, but for the treatment of age-related infertility. Regarding that “slippery slope” everyone insisted was ludicrous? As Pete Shanks pointed out, “We didn't have to wait a week.”

The US Institute of Medicine has a tough job ahead of it now. It has been charged by the FDA to consider the ethical and social policy issues raised by these techniques and to produce a consensus report that will undoubtedly influence the future of germline modification in the US. On March 31 and April 1, the committee will be holding a public workshop in DC – you can register for the workshop here.

Previously on Biopolitical Times: