Why Deaf People Oppose Using Gene Editing to "Cure" Deafness
By Sarah Katz,
Discover
| 08. 11. 2020
Researchers have figured out how to use a gene-editing tool called CRISPR 2.0 to prevent and treat deafness. But many deaf people are happy the way they are.
Deaf Power Poster
As someone who was born deaf, I’m concerned about the latest application of a gene-editing tool called CRISPR 2.0. And I'm not alone. In June, researchers at Boston Children's Hospital, Harvard and MIT announced that, using mice, they figured out how to use the technology to temporarily “correct” a mutation in the TMC1 gene, which can cause deafness in babies. The work is a monumental step toward reversing hereditary deafness in people with a single injection. It could drastically change the fact that two to three out of every 1,000 U.S. children are born deaf or hard of hearing, according to research completed in 2007.
CRISPR 2.0 is a more precise version of the gene-editing tool CRISPR-Cas9, which works like a pair of molecular scissors. Scientists use it to cut strands of DNA. These scissors are built from the defense mechanisms of bacteria, which chop up and destroy the DNA of viruses to prevent their invasion. And in this recent study, they were able to use the smaller scissors of CRISPR 2.0 created in 2017 — think tweezers...
Related Articles
By Diaa Hadid and Shweta Desai, NPR | 01.29.2026
MUMBRA, India — The afternoon sun shines on the woman in a commuter-town café, highlighting her almond-shaped eyes and pale skin, a look often sought after by couples who need an egg to have a baby.
"I have good eggs,"...
By George Janes, BioNews | 01.12.2026
A heart attack patient has become the first person to be treated in a clinical trial of an experimental gene therapy, which aims to strengthen blood vessels after coronary bypass surgery.
Coronary artery bypass surgery is performed to treat...
By Staff, ScienceDaily | 01.05.2026
Scientists at UNSW Sydney have developed a new form of CRISPR technology that could make gene therapy safer while also resolving a decades-long debate about how genes are switched off. The research shows that small chemical markers attached to DNA
...
Following a long-standing CGS tradition, we present a selection of our favorite Biopolitical Times posts of the past year.
In 2025, we published up to four posts every month, written by 12 authors (staff, consultants and allies), some in collaboration and one simply credited to CGS.
These titles are presented in chronological order, except for three In Memoriam notices, which follow. Many more posts that are worth your time can be found in the archive. Scroll down and “VIEW...