A ‘Lobby’ Where a Molecule Mob Tells Genes What to Do
By Philip Ball,
Quanta Magazine
| 02. 14. 2024
The discovery during the Human Genome Project in the early 2000s that we humans have only about 20,000 protein-coding genes — about as many as the tiny soil-dwelling nematode worm, and less than half as many as the rice plant — came as a shock. That blow to our pride was softened, though, by the idea that the human genome is rich in regulatory connections. Our genes interact in a dense network, in which pieces of DNA and the molecules they encode (RNA and proteins) control the “expression” of other genes, influencing whether they make their respective RNA and proteins. To understand the human genome, we needed to understand this process of gene regulation.
That task, however, is proving to be much harder than decoding the sequence of the genome.
Initially, it was suspected that gene regulation was a simple matter of one gene product acting as an on/off switch for another gene, in digital fashion. In the 1960s, the French biologists François Jacob and Jacques Monod first elucidated a gene regulatory process in mechanistic detail: In Escherichia coli bacteria...
Related Articles
The Center for Genetics and Society is delighted to recommend the current edition of GMWatch Review – Number 589. UK-based GMWatch, a long-standing ally, was founded in 1998 by Jonathan Matthews as an independent organization seeking to counter the enormous corporate political power and propaganda of the GMO industry and its supporters. Matthews and Claire Robinson are its directors and managing editors.
CGS works to ensure that social justice, equity, human rights, and democratic governance are front...
By Ryan Cross, Endpoints News | 08.19.2025
Human eggs are incredibly rare cells. The ovary typically produces only 400 mature eggs across a woman’s life. But biologists in George Church’s lab at Harvard University — a group that’s never content with nature’s limits — just got a...
By Katherine Drabiak, Journal of Medical Ethics Forum | 08.07.2025
Adapted from Mitochondrial DNA at
National Human Genome Research Institute
Recently, media outlets around the world have been reporting on children born from pronuclear genome transfer (sometimes called “3-parent IVF,” “mitochondrial donation” or “mitochondrial replacement therapy”) at Newcastle Fertility Center...
By Nicky Hudson, The Conversation | 08.12.2025