Human Brain Organoids Thrive in Mouse Brains
By Ashley Yeager,
The Scientist
| 04. 16. 2018
Mouse brains make nice homes for human brain organoids, researchers report today (April 16) in Nature Biotechnology.
Brain organoids, also known as mini-brains, are tiny clumps of brain cells grown from stem cells that researchers are using to investigate the neural underpinnings of autism and other neurological disorders. But the organoids typically grow in culture for only a few months before they die, limiting their usefulness as models of real brains. Transplanting the three-dimensional clumps of human brain tissue into the brains of mice allows the organoids to continue to develop, sprouting life-sustaining blood vessels as well as new neuronal connections, the new study reports. The work takes a step toward using brain organoids to study complexities of human brain development and disease that can’t be investigated with current techniques. Brain organoid transplantation may even one day offer a treatment option for traumatic brain injury or stroke.
“Although organoids are a great advance in human neuroscience, they are not perfect. They are missing blood vessels, immune cells and functional connections to other areas of the nervous system,” Jürgen Knoblich...
Related Articles
By Katie Hunt, CNN | 07.30.2025
Scientists are exploring ways to mimic the origins of human life without two fundamental components: sperm and egg.
They are coaxing clusters of stem cells – programmable cells that can transform into many different specialized cell types – to form...
By Ewen Callaway, Nature | 08.04.2025
For months, researchers in a laboratory in Dallas, Texas, worked in secrecy, culturing grey-wolf blood cells and altering the DNA within. The scientists then plucked nuclei from these gene-edited cells and injected them into egg cells from a domestic dog ...
By Kristel Tjandra, Genetic Engineering & Biotechnology News | 07.30.2025
CRISPR has taken the bioengineering world by storm since its first introduction. From treating sickle cell diseases to creating disease-resistant crops, the technology continues to boast success on various fronts. But getting CRISPR experiments right in the lab isn’t simple...
By Arthur Caplan and James Tabery, Scientific American | 07.28.2025
An understandable ethics outcry greeted the June announcement of a software platform that offers aspiring parents “genetic optimization” of their embryos. Touted by Nucleus Genomics’ CEO Kian Sadeghi, the $5,999 service, dubbed “Nucleus Embryo,” promised optimization of...