CRISPR Startups Give Genome Editing Several New Twists
By Catherine Shaffer,
Genetic Engineering & Biotechnology News
| 08. 03. 2020
Base editors, exonucleases, and other refinements enable advances in pathogen recognition, antibacterial development, genetic medicine, xenotransplantation, and agriculture
Just seven years ago, the Broad Institute’s Feng Zhang, PhD, and Harvard geneticist George Church, PhD, separately demonstrated that in human cell cultures, genome editing could be performed using a CRISPR system. CRISPR, which stands for clustered regularly interspaced short palindromic repeats, first came to light as part of a naturally occurring defense system in bacteria. CRISPR DNA in bacteria includes repetitive elements and spacer elements, the latter of which encode RNA molecules that complex with a CRISPR-associated (Cas) nuclease and guide it to viral targets, that is, viruses that possess genetic material complementary to guide RNA.
After Zhang and Church showed that CRISPR-Cas9, one of the crude adaptive immune systems found in bacteria, had potential as a genomic engineering tool, many developers followed their lead. Early CRISPR startups—such as Editas Medicine, CRISPR Therapeutics, and Intellia Therapeutics—went public and have since prospered. And now a new crop of startups is showing that there’s still plenty of room for innovation.
Each of the new CRISPR startups features a unique twist on the original CRISPR formula. Examples of CRISPR twists include exotic...
Related Articles
By Diaa Hadid and Shweta Desai, NPR | 01.29.2026
MUMBRA, India — The afternoon sun shines on the woman in a commuter-town café, highlighting her almond-shaped eyes and pale skin, a look often sought after by couples who need an egg to have a baby.
"I have good eggs,"...
By George Janes, BioNews | 01.12.2026
A heart attack patient has become the first person to be treated in a clinical trial of an experimental gene therapy, which aims to strengthen blood vessels after coronary bypass surgery.
Coronary artery bypass surgery is performed to treat...
By Staff, ScienceDaily | 01.05.2026
Scientists at UNSW Sydney have developed a new form of CRISPR technology that could make gene therapy safer while also resolving a decades-long debate about how genes are switched off. The research shows that small chemical markers attached to DNA
...
Following a long-standing CGS tradition, we present a selection of our favorite Biopolitical Times posts of the past year.
In 2025, we published up to four posts every month, written by 12 authors (staff, consultants and allies), some in collaboration and one simply credited to CGS.
These titles are presented in chronological order, except for three In Memoriam notices, which follow. Many more posts that are worth your time can be found in the archive. Scroll down and “VIEW...