Aggregated News

<i>Illustration by Sébastien Thibault</i>
Untitled Document

Three years ago, Bruce Conklin came across a method that made him change the course of his lab.

Conklin, a geneticist at the Gladstone Institutes in San Francisco, California, had been trying to work out how variations in DNA affect various human diseases, but his tools were cumbersome. When he worked with cells from patients, it was hard to know which sequences were important for disease and which were just background noise. And engineering a mutation into cells was expensive and laborious work. “It was a student's entire thesis to change one gene,” he says.

Then, in 2012, he read about a newly published technique1 called CRISPR that would allow researchers to quickly change the DNA of nearly any organism — including humans. Soon after, Conklin abandoned his previous approach to modelling disease and adopted this new one. His lab is now feverishly altering genes associated with various heart conditions. “CRISPR is turning everything on its head,” he says.

The sentiment is widely shared: CRISPR is causing a major upheaval in biomedical research. Unlike other gene-editing methods,...