CRISPR cures progeria in mice, raising hope for one-time therapy for a disease that causes rapid aging
By Sharon Begley,
STAT
| 01. 06. 2021
Biologists tend not to discuss experimental results on a handful of cells and a single solitary mouse — too preliminary, too sketchy. David Liu of the Broad Institute therefore had no plans to present such findings, which he’d peeked at over his graduate student’s shoulder, when he gave a high-profile talk in 2018 at the National Institutes of Health on a form of the CRISPR genome-editing system that he’d invented.
Not that he wasn’t tempted. Student Luke Koblan had used the clever new form of CRISPR, called base editing, to alter a single misspelled pair of “letters” among the 3 billion in the DNA of cells taken from children with progeria, an infamous and fatal genetic disease marked by accelerated aging. Koblan had done this work in lab dishes, and had also corrected the progeria mutation in a mouse carrying the human gene that, as a result, aged so quickly that by toddlerhood, it was like a picture of Dorian Gray with whiskers.
Chatting before his talk with NIH Director Francis Collins, who discovered the progeria mutation in 2003, Liu...
Related Articles
By Katie Hunt, CNN | 07.30.2025
Scientists are exploring ways to mimic the origins of human life without two fundamental components: sperm and egg.
They are coaxing clusters of stem cells – programmable cells that can transform into many different specialized cell types – to form...
By Ewen Callaway, Nature | 08.04.2025
For months, researchers in a laboratory in Dallas, Texas, worked in secrecy, culturing grey-wolf blood cells and altering the DNA within. The scientists then plucked nuclei from these gene-edited cells and injected them into egg cells from a domestic dog ...
By Kristel Tjandra, Genetic Engineering & Biotechnology News | 07.30.2025
CRISPR has taken the bioengineering world by storm since its first introduction. From treating sickle cell diseases to creating disease-resistant crops, the technology continues to boast success on various fronts. But getting CRISPR experiments right in the lab isn’t simple...
By Arthur Caplan and James Tabery, Scientific American | 07.28.2025
An understandable ethics outcry greeted the June announcement of a software platform that offers aspiring parents “genetic optimization” of their embryos. Touted by Nucleus Genomics’ CEO Kian Sadeghi, the $5,999 service, dubbed “Nucleus Embryo,” promised optimization of...