The Promise and Peril of Crispr
By John Lauerman and Caroline Chen,
Bloomberg Businessweek
| 06. 25. 2015
Untitled Document
Tracy Antonelli and her three daughters suffer from thalassemia, a blood disorder that saps their strength, leaves them anemic, and requires them to visit Boston Children’s Hospital every three weeks for transfusions. “We’re lucky we have a treatment regimen that’s available to us, but it’s cumbersome,” Antonelli says.
A technology in development at several drug companies offers some hope for a more effective and convenient treatment for the Antonellis, and patients with other serious genetic conditions, such as sickle cell anemia. The technique is called Crispr, which stands for clustered regularly interspaced short palindromic repeats. Crispr, a method for editing the human genome—the complete set of an individual’s genetic material present in any of her cells—allows scientists to cut out faulty sections of DNA that can lead to serious illnesses and replace them with healthy ones. In the two-part process, first an RNA “guide” molecule locates the part of the DNA that needs to be removed or fixed. Then a Cas9 protein attaches to the DNA and cuts out the mutation. In some cases, scientists can then insert...
Related Articles
By Jenny Lange, BioNews | 12.01.2025
A UK toddler with a rare genetic condition was the first person to receive a new gene therapy that appears to halt disease progression.
Oliver, now three years old, has Hunter syndrome, an inherited genetic disorder that leads to physical...
By Grace Won, KQED [with CGS' Katie Hasson] | 12.02.2025
In the U.S., it’s illegal to edit genes in human embryos with the intention of creating a genetically engineered baby. But according to the Wall Street Journal, Bay Area startups are focused on just that. It wouldn’t be the first...
By Pam Belluck and Carl Zimmer, The New York Times | 11.19.2025
Gene-editing therapies offer great hope for treating rare diseases, but they face big hurdles: the tremendous time and resources involved in devising a treatment that might only apply to a small number of patients.
A study published on Wednesday...
Several recent Biopolitical Times posts (1, 2, 3, 4) have called attention to the alarmingly rapid commercialization of “designer baby” technologies: polygenic embryo screening (especially its use to purportedly screen for traits like intelligence), in vitro gametogenesis (lab-made eggs and sperm), and heritable genome editing (also termed embryo editing or reproductive gene editing). Those three, together with artificial wombs, have been dubbed the “Gattaca stack” by Brian Armstrong, CEO of the cryptocurrency company...