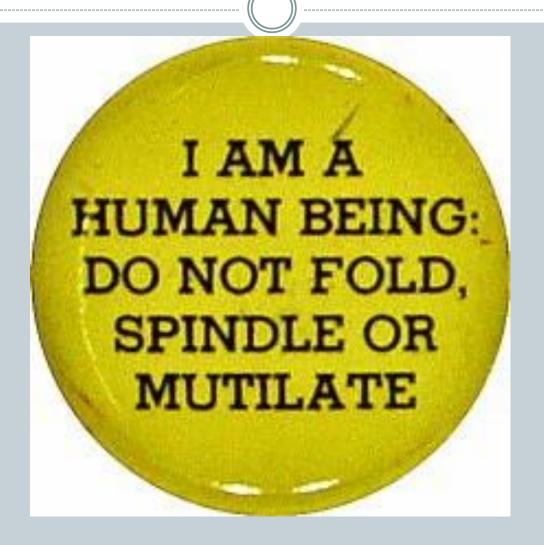
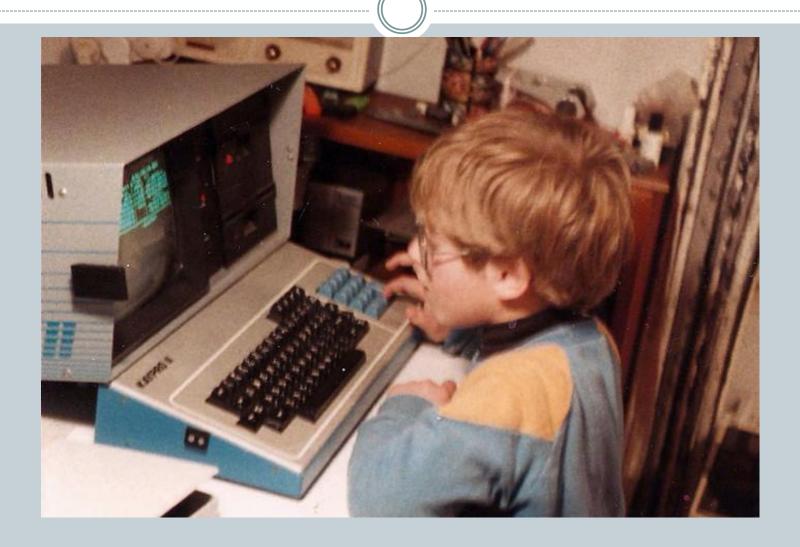
Presentation on

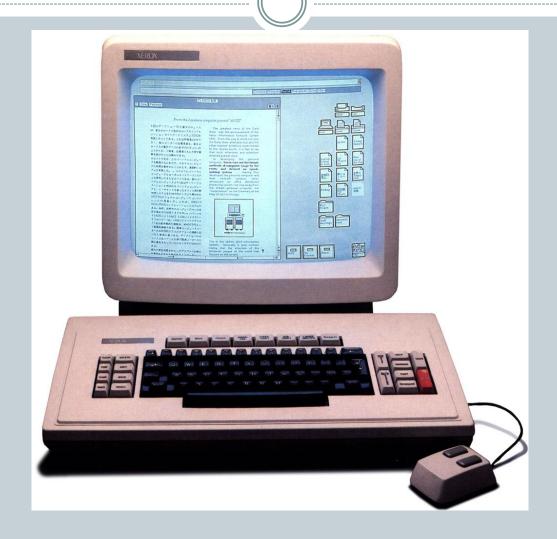

Synthetic Biology:

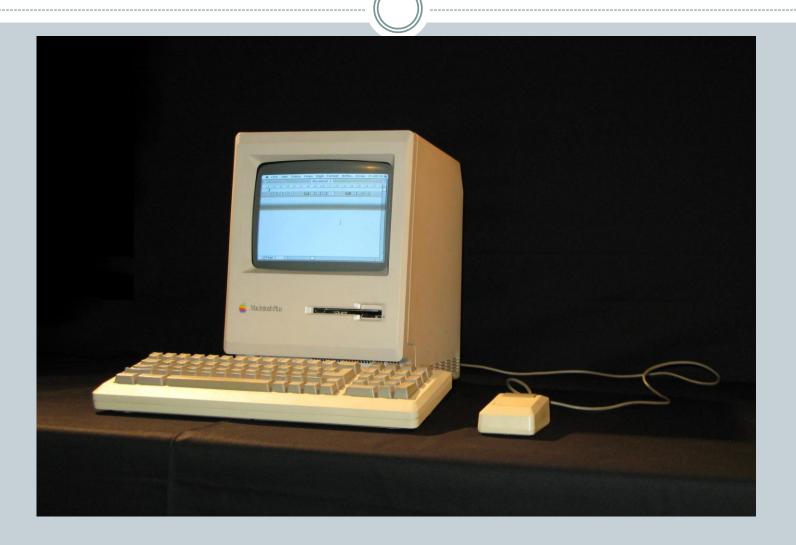
DIY Tinkering Meets Big Capital

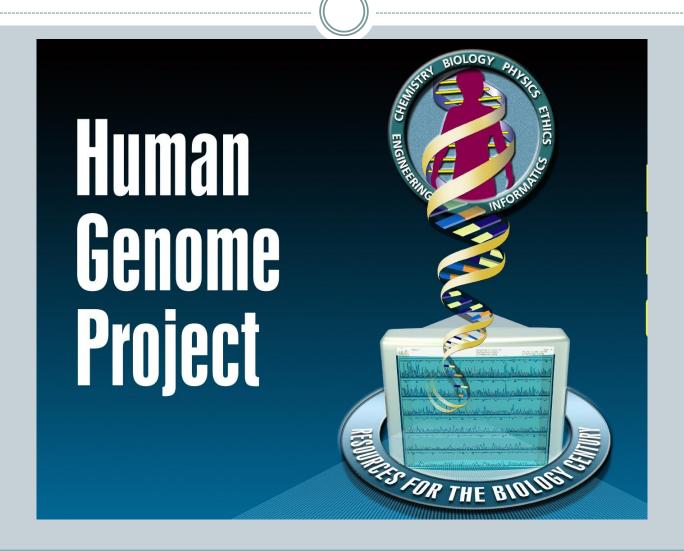
at Shaping San Francisco

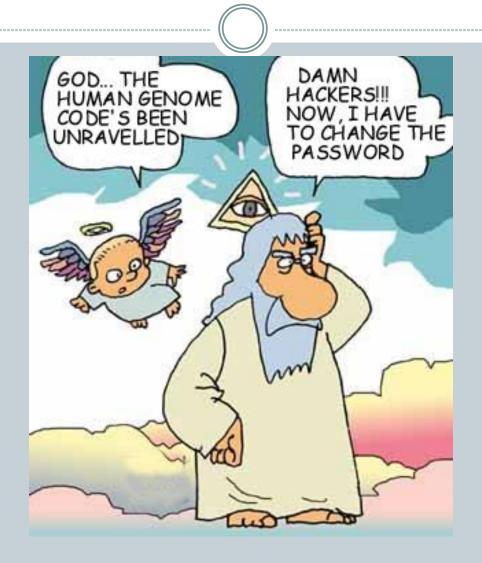
by Pete Shanks


13 April, 2016









1990-2003

Gene Editing Tools

- 1990s Various targeting vectors
- 2003–5 ZFN: Zinc Finger Nucleases
- 2009–11 TALENs: Transcription Activator-Like Effector Nucleases
- 2012 First CRISPR/Cas9 papers published: Clustered Regularly Interspersed Short Palindromic Repeats [with] CRISPR associated protein 9

Human Experiments (1)

- April, 2015 Chinese scientists publish an attempt to modify human embryos using CRISPR, being careful not to begin any pregnancies
- The paper was published in *Protein & Cell* after both *Science* and *Nature* refused on ethical grounds
- The experiment failed: only a few embryos were changed, and many had "off-target" effects

Human Experiments (2)

- February, 2016 British authorities approve in principle experimental genetic editing in embryos
- They will inactivate genes to study the effect on very early development, and stop within 14 days

Human Experiments (3)

- April, 2016 a second Chinese team reports having edited the genes of human embryos in an attempt to make them resistant to HIV
- 4 of 26 were modified, not all successfully, but the attempt is called a proof of principle

Why CRISPR?

	Rough cost per target gene	Target Validation Time*	Complexity Threshold**	Adoption of Technology	Mode of DNA Recognition	Mode of DNA Modification
Targeting Vectors	jn/a- varies massively	4-12 weeks	1-3	1990s	Vector DNA homology to Host genomic DNA	Host cellular machinery
Zinc Finger Nucleases (ZFNs)	\$4000- \$7000	8 weeks	Multiple	~2000	Zinc Finger Protein	Zinc Finger fused to Fok1 nuclease***
TALENS	\$2500- \$4000	8 weeks	Multiple	~2011	Transcription Activator Like Effector (TALE) Protein	TALE fused to Fok1 nuclease
Cas9	\$50-\$100	2-4 weeks	Multiple	~2013	guide RNA	cas9 intrinsic nuclease activity

From Techcrunch, May 2015

Emmanuelle Charpentier & Jennifer Doudna

Feng Zhang

George Church

A billion here, a billion there ...

- These are not hippies in garages, they are tenured professors at UC Berkeley, Harvard and other major institutions
- There is a major patent fight in process, which may be worth billions (or not!)
- All the major players have founded companies, with significant venture capital behind them

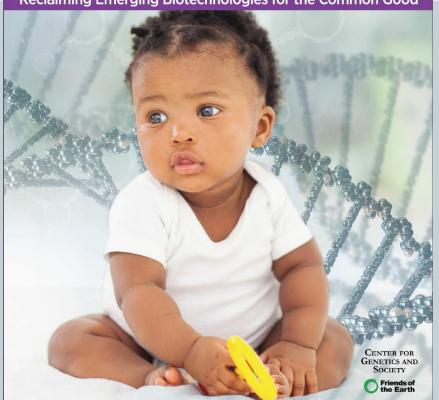
- Editas [Zhang, Church et al.] was the first to go public, in early February, raising \$94 million
- That's on top of at least \$230 million raised earlier;
 \$75 million had been spent by last September
- Early shareholders included at least 7 venture capital funds, which together owned about ¾ of the stock: Flagship Ventures; Third Rock Ventures; Polaris Venture Partners; Bngo (a Bill Gates-affiliated fund) Viking Global; Fidelity; Deerfield

- Intellia [Doudna et al.] has important funding from Novartis, Atlas Venture, OrbiMed HealthCare Fund Management, Fidelity Management and Research, Janus Capital Management, Foresite Capital, Sectoral Asset Management, EcoR1 Capita ...
- On Monday, Intellia filed for an IPO of \$120 million

- CRISPR Therapeutics [Charpentier et al.] is also said to be looking to go public
- Meanwhile, they have a \$350 million 5-year deal with Bayer, as well as other substantial funding
- Says CEO Rodger Novak:

Coming late to this party is not very smart

Governance, Regulation and Control: Of Which People, By Which People, For Which People?


Reasons to Say No to GM Humans

- 1. Profound health risks to future children
- 2. Thin medical justification
- 3. Treating human beings like engineered products
- 4. Violating the common heritage of humanity
- 5. Undermining the widespread policy agreements among dozens of democratic nations
- 6. Eroding public trust in responsible science
- 7. Reinforcing inequality, discrimination and conflict in the world

Center for Genetics and Society

EXTREME GENETIC ENGINEERING and the HUMAN FUTURE

Reclaiming Emerging Biotechnologies for the Common Good

http://www.foe.org/news/news-releases/2015-11-should-our-childrenbe-genetically-engineered

http://www.geneticsandsociety.org/article.php?id=9000

"Once the discovery is made, it's out there. Anybody with basic molecular biology training can use it for genome editing. That's a bit scary."

Jennifer Doudna