Aggregated News

Untitled Document

Thousands of researchers will descend on Boston this fall for an event billed as the world’s largest gathering of synthetic biologists. The field is evolving so rapidly that even scientists working in it don’t agree on a definition, but at its core synthetic biology involves bringing engineering principles to biotechnology. It’s an approach meant, ultimately, to make it easier for scientists to design, test and build living parts and systems — even entire genomes.

If genetic sequencing is about reading DNA, and genetic engineering as we know it is about copying, cutting and pasting it, synthetic biology is about writing and programming new DNA, with two main goals: create genetic machines from scratch and gain new insights about how life works.

In Boston, scientists and students will showcase synbio projects developed over the summer, including systems ranging from new takes on natural wonders, such as the conversion of atmospheric nitrogen to a useful form (nitrogen fixation), to newly imagined functions, such as an odorless E. coli cell meant to crank out a lemony, edible “wonder...